ST-170 AIN SUBSTRATES ALUMINUM NITRIDE

Aluminum nitride (AIN) provides the high performance electrical and thermal properties of beryllia (BeO) at a more economical cost and without BeO's toxicity concerns.

Sienna ST-170 AIN substrates offer:

- High thermal conductivity
- Thermal expansion that closely matches that of Si, SiC, and GaN over a wide temperature range
- No-toxicity Aluminum Nitride poses no special disposal requirements
- Reliable metallization performance
- Available with as-fired or lapped surfaces that are ideal for thick film application
- Significant cost/performance advantage
- Standard sizes (inch) include:

2x2x0.025

4x4x0.025

4.5x4.5x0.015

4.5x4.5x0.040

These attributes make Sienna ST-170 AlN substrates the best choice for solving thermal management problems in power electronics and microwave applications. ST-170 AlN is the ideal electronic substrate for high power and high frequency applications including:

- Power Transistors and Rectifiers
- Power Supplies
- Chip Carriers
- Heat Spreaders

ST-170 AIN SUBSTRATES AIN PROPERTIES

	ST-170
Color	Light Gray
Density, g/cm³	>3.30
Thermal Conductivity, W/m•K	170±10
Heat Capacity @ RT, J/g•K	0.736
Thermal Expansion Coefficient, X10 ⁻⁶ /°C 25°C - 400°C	4.4
Dielectric Strength, kV/mm	≥25
Volume Resistivity, Ohm-cm	>10 ¹³
Dielectric Constant @1 MHz	8.4
Loss Tangent @1 MHz	0.002
Surface Roughness, Ra, μm As-fired Lapped	0.6 0.4
Camber, mm/mm	0.003 (typical)
Flexural Strength, MPa	350
Elastic Modulus, GPa	320
Poisson's Ratio	0.24
Hardness, GPa	12
Application	High thermal conductivity, chip carriers/substrates

The information given herein is a representation of typical properties and is not specifications. Sienna Technologies, Inc. makes no expressed or implied warranties as to the accuracy and/or suitability of the information. Sienna Technologies, Inc. assumes no liability arising out of the use of this information by others.

